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Abstract. The electrostatic force on a conducting sphere positioned symmetrically above 
a uniformly charged, insulating, circular disc is calculated using the method of images. 
Results for spheres which are either earthed, uncharged or carry a known charge are given 
in terms of infinite series which converge rapidly under certain stated conditions. The 
dependence of the force on sphere radius, sphere-plane separation and the radius of the 
charged area is presented graphically. 

1. Introduction 

Recently there has been considerable interest in the nature of the forces responsible for 
adhesion at interfaces (Krupp 1967, van den Temple 1972). At a particular interface 
these forces may be due to a variety of phenomena which fall into three categories. 
The strongest attractive interactions result from metallic, covalent or ionic chemical 
bonds. These forces are essentially short ranged. Weaker, long-range interactions are 
caused by van der Waals or dispersion forces and electrostatic forces. Electrostatic 
attractions may be due to charge transfer between bodies of different work function 
giving rise to a double layer of charge at their interface. Alternatively, one of the 
adherents may carry an excess of electric charge on or near to its surface. It has been 
shown (Krupp 1967) that, in general, dispersion forces will predominate over electro- 
static forces. However, for metals in contact with non-metals, high densities of charge 
on the non-metal surface may give rise to attractive electrostatic forces considerably in 
excess of any dispersion forces. Such a case has recently been observed by Higginbotham 
et a1 (1975) in a study of adhesion at the gold-mica interface. It is also well known that 
a tribo-electric charge on plastic can attract small metal spheres with forces greater 
than their own weight. 

One experimental method frequently employed in the measurement of adhesive 
forces is to find the force required to remove a metal sphere or hemispherical tip from a 
plane surface, either by means of an ultracentrifuge (Bohme et a1 1965), a gravity tech- 
nique (Howe et a1 1955) or a microbalance (Kohno and Hyodo 1974). Theories of ad- 
hesion due to dispersion forces (Craig 1973) and electrostatic double layers (Derjaguin 
and Smilga 1967) are well developed and expressions for attractive forces between sphere 
and half-sphere due to each of these phenomena have been given by Krupp and Sperlung 
(1966). However, the literature contains no theory of electrostqtic attraction for the 
case of a non-equilibrium excess charge residing on an insulating surface. 
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2. Tbeory 

The theory given below examines the situation where an earthed conducting sphere in 
vacuum is positioned symmetrically above a circular area of charge density 0 bound 
to a thin insulating sheet. The assumptions made in the solution of the problem are as 
follows. 

(i) The insulating sheet has no dimension perpendicular to the plane of the disc. 
Thus, the bound charges which would normally be induced on the front and rear 
surfaces of the insulator must be considered to be coincident, so that they will have no 
net effect. Since the insulating disc is treated as two dimensional, it will not give rise 
to any image charges. The implications of this assumption for the relationship between 
this theory and the experimentally encountered situation of an insulator of finite thick- 
ness are discussed in § 6. 

(ii) The sphere and plane have idealized, smooth surfaces. 
(iii) A uniform charge density c resides within a circular disc on the insulating sheet. 

Outside the disc the surface charge is zero. The charge is not mobile so that 0 is un- 
affected by the presence of the conducting sphere. 

(iv) The sphere is earthed. 
The steps in the solution of the problem are : 
(a) Calculation of the image charge. For the purposes of calculating the attractive 

force on the sphere, the sphere may be replaced by a surface charge density G', which is 
the image of IS in the sphere. IS' lies on an imaginary surface within the sphere. 

(b)  Derivation of expressions for the potentials Dp (for the plane) and QS (for the 
sphere) at a general point due to the charge distributions c and 0' respectively. 

(c) Determination of the total potential (D = Dp + Os. 
( d )  Derivation of the true surface charge density cs on the sphere. 
(e) Calculation of the total attractive force on the sphere. 
The coordinate system used to specify the problem is shown in figure 1. The sphere 

of radius a has its centre a distance p from the plane. The radius of the charged disc is c. 

2.1. The image'charge density 0' 

A charge q a distance d from the centre of an earthed sphere of radius a has an image 
charge q' = -qa/d located a distance az/d from the centre of the sphere on a line joining 
q to the centre (see eg Lorrain and Corson 1970, p 147). If the locus of d is such that q 
is spread over a plane whose minimum separation from the centre of the sphere is p ,  
then the locus of q' is a sphere of radius b = a2/2p, as shown in figure 1. Considering 
the relative sizes of corresponding elementary areas dS, and dSz on the plane and the 
image sphere, the charge density on the image sphere can be shown to be 

P 3 0  

a3 cos3e' 
0'= -~ 

As 8 4 x / 2  the area of the plane being imaged increases so that IS' --f cz. It is therefore 
necessary that the charged area of the plane must be limited to a circle of finite radius c, 
so that the image charges are confined to that segment of the image sphere for which 
e < e,. 

2.2.2. The  potential due to 0. The potential at a point Po lying on the polar axis OZ, 
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Figure 1. The Cartesian (x, y, z) and spherical polar ( r ,  @,I$) coordinate systems employed 
in the analysis. The insulating plane carries a uniform surface charge density U within a 
disc of radius c. The earthed conducting sphere has radius a and the image sphere has 
radius b. 

due to the charge density c, is 

c 
@’”p = -[(c’ + Z y ’ 2  - Zl] .  

260 

Putting z1 = p - z  (see figure l), this can be expressed in the form 

Since z(2p - z) < c2 + p 2 ,  the term in large parentheses may be expanded as an infinite 
series to give an expression of the form 

where 

bo = ( ~ * + p ~ ) ” ~  - p  

1 P 2  b -  - 2 ( 2  + p y  - 2 ( 2  + p 2 ) 3 ’ 2  

P P 3  b -  - 2(c2 + p 2 ) 3 ’ 2  - 2(c2 + p 2 ) 5 ’ 2  
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and 

where the limits of k in the summation are n/2 to n if n is even and (n  + 1)/2 to n if n is odd. 
Thus, the potential at a general point P in the region 2b < r < p ,  due to the charge 

density o on the disc of radius c is 

where P,(cos 0) are the Legendre polynomials. 

2.2.2. The potential due to o‘. The potential at a general point P due to a charge o’dS, 
at Q (see figure 1) is given by 

1 d d S 2  
I$=------. 

4nc0 rl  

Therefore the potential at  P due to the total image charge is 

Provided Q is allowed to take on all values of 4, no generality is lost by constraining P 
to lie in the plane y = 0. Then 

OP = R i + z k  

OQ = 2 B sin 0 cos 8 cos 4 i+ 2b sin i3 cos 8 sin 4 j + 2 b  cos28 k.  

Therefore 

d 4  ) de. 
4 7 ~ 0  JeO cos2e =( J z n  [ R ~  + z2 + 4b(b - Z )  C O S ~ ~  - 4 b ~  sin e COS e COS 41’;~ 
pao 

Since it is necessary to find the gradient of this potential, the integral must be determined 
in analytical form. This can be done if R is set equal to zero, ie if the point P lies on 
the polar axis OZ. The integral then becomes 

as = -- 

27~ sin 6 dB 

[ ( ~ - 2 b  cos280)2 +4b2 sin2@, C O S ~ B , ] ~ ’ ~  - ( ~ - 2 b )  

Thus 

Since all points P of interest lie outside the conducting sphere, then b/z < 3 and the term 
in square brackets may be expanded as an infinite series to give an expression of the 
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form 

where 

a, = 2 - 2 ~ 0 ~ 8 ,  

a2  = 2 COS eo - 2  cos38, 

a3 = 4  COS^^, - 4  cos58, 
and 

where the limits of k in the summation are n/2 to n if n is even and (n + 1)/2 to n if n is 
odd. Thus, the potential at a general point P due to the charge density U' on the segment 
6 < 8, of the image sphere is 

2.3. The total potential 

Recalling that b = a2/2p  and that cos Bo = p/(c2 +P' ) ' '~  it is observed that the coeffi- 
cients a, and b, are related by the expression 

The total potential Q, = +as in the region outside the sphere can therefore be written 

The emergence of a simple relationship between a,, and b,, is to be expected since on 
the surface of the sphere Q, must be zero. Cancellation of all terms in two infinite series 
is unlikely to occur unless each term in one series cancels with an equivalent term in the 
other. As a check on the expressions for OP and as, it is found that substituting r = a 
in the above expression yields Q, = 0. 

2.4. The charge density on the surface of the sphere 

The field at the surface of the sphere may be found by differentiation of the total potential 
with respect to r at r = a :  
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The charge density os on the sphere can then be written 
m 

os = to 1 cn~n(cose )  
n = O  

where 

"-'2n+ 1 
cn = (i) T a n  

and the a, are as defined in 0 2.2.2. 

2.5. The attractive force on the sphere 

The force on the sphere towards the plane is given by 

where 
sphere 

Using the recurrence relations and the orthogonality properties of the Legendre poly- 
nomials, this reduces to 

C O 1  

I = 2 c J- cncn + 1 pn(p)pn + 1 (p)  d/l. 
n = O  1 

Therefore 

n + l  2 a 

I = 2 1 c n c n + , - -  
n = O  2n+3 2n+1' 

The convergence of this series is sufficiently rapid for a reliable value to be computed 
from the first twenty terms. Additional terms were found to cause no changes greater 
than 1 part in IO4. 

For given values of a, p and c,  I can be evaluated, and the force Fe on the sphere can 
then be calculated for any particular value of the charge density o. 

3. Convergence of the series 

A sufficient condition for the convergence of the series is that 

n = O  2 an( : ) n  

in the expression for @: be absolutely convergent. This series is composed of terms of 
the form 

(-1)(2i-3)!4icos2i-1~o 
(i - 2)! 22'-2 
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The condition for the absolute convergence of the series of these terms from i = 2 to 
so can be shown to be 

c2 > 2a2-@-a)? 

When the sphere touches the plane, p = a, and the condition for convergence is c > aJ2. 
The condition that the series be absolutely convergent is in fact overstrict. It would 

appear from an inspection of the terms in the summation that the series will converge 
provided c > a. 

4. Graphical presentation of results 

Figure 2 shows the dependence of the force Fe on sphere radius a for the case where the 
sphere touches the plane @ - a  = 0). The graph was extended to values of a > c by 
calculating the asymptotic value of Fe as a tends to infinity. Provided c >> p - a ,  the 
problem then reduces to that of a parallel plate condenser where plates of radius c carry 
charge densities k c. 

Force/K is plotted as ordinate where K = na2/4r,. The asymptotic value is then 
2c2.  Fe/K is plotted only for c = 1. To find F,/K for a = a, and c = c,, the value of 
Fe/K is read at a = a/c = a,/c, and multiplied by (c,/c)~ = c:. Graphs of Fe/K against 
a for p - a  > 0 show a similar overall shape, but must be calculated separately for 
each individual set of values of a, c and p .  

/ I  I I I I I I I I 
O I 2 3 4 

S p h m  radius o (length units) 

Figure 2. The forces on earthed (full curve) and uncharged (broken curve) spheres as 
functions of sphere radius (I for the case where the sphere touches the plane. The curve 
shown is for disc radius c = 1 but may be scaled to any case of similar geometry as described 
in the text. 
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Figure 3 shows the dependence of FJK on disc radius c for the case p - a  = 0. 
Figure 4 shows how FJK varies with sphere-plane separation p - a  for the case c = 1. 

- 

5. Forces 011 charged and uocbarged spberes 

The above theory for an earthed sphere is easily modified for the case of an uncharged 
sphere. For an earthed sphere, the total image charge qi is given by 

Bo a4 1 
4; = Jo 2nd2sin Bcos Ode = 2npa 0 1 -- ( cos eo) .  

If the sphere is uncharged, the equivalent charge system when the sphere is removed 
consists of the image charge qj as for the case with the sphere earthed, and an additional 
point charge -41 at point 0. This gives rise to one extra term in the series for I which 
cancels with the first term n = 0. Thus the force on an uncharged sphere is 

U 
0.6 

0.4 

0.2 

0.6 

0.4 

70.2 -- 
I 

unit1 

- 
Disc radius c (length units) 

Figure 3. The forces on earthed (full curves) and 
uncharged (broken curves) spheres as functions of 
disc radius c for the case where the sphere touches 
the plane. 

Sphere-plane sepamtion p u  (length units) 

Figure 4. The forces on earthed and uncharged 
spheres as functions of sphere-plane separation p --a. 
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where 

n + l  2 03 

I" = 2 1 cnc,+ 1- - 
n = l  2 n + 3  2 n + l '  

The dependence of F J K  on a, c and p - a is shown by the broken curves in figures 2,  
3 and 4. 

The force on a sphere carrying a charge Q can be found by placing a further addi- 
tional charge Q at point 0. The force is then given by 

sohere 

Again, this introduces one extra term into the expression for the force to give 

4% 

6. Discussion 

The assumption which most seriously limits the applicability of the theory is that the 
insulating material is considered to have infinitesimal thickness. Only for this case can 
the problem be solved in terms of the one image charge. As soon as the insulator is 
allowed to become even one atom thick, the polarization of the atoms will be influenced 
by the presence of the sphere. If the problem is to be solved in terms of image charges, 
a double infinity of images will then be required, one series within the sphere and the 
other behind the front surface of the insulator. In the most interesting region where the 
sphere is close to  or in contact with the plane, many images of complicated shape and 
charge distribution must be considered, and the problem becomes ihtractable. As the 
sphere recedes from the plane, the images approximate to point charges at the centre 
of the sphere and at the mirror point behind the insulator surface. These two infinite 
series of charges may then be summed, and the force between them calculated. Provided 
p >> a, an estimate can be made of the percentage difference between the forces calcu- 
lated above and those to be expected in the case of an insulator of finite thickness. As 
the sphere approaches the plane ( p  2 a) the approximation that the image charges are 
at the centre of the sphere is not realistic. In this case, an overestimate of the percentage 
difference may be found by assuming that the same image charges are located at points 
on the z axis, distance + @ - 2 b )  from the charged surface. On this basis the forces in 
figure 4 can be shown to apply also in the case of a thick insulator of dielectric constant 
3 within the following limits: (i) the forces shown form a lower bound; (ii) they are 
accurate within 2 % at a = 0.1, p - a = 2 and 15 % at a = 0.5, p - a = 2 ; (iii) the accuracy 
decreases as p -  a decreases (eg 7 % at a = 0.1, p - a = 1 and 55 % at a = 0.5, p - a = 1). 

These arguments cannot be applied to figures 2 and 3 where p - a  = 0. However, 
in figure 2 it is known that the graph passes through the origin, and the general shape 
of the curve for a thick insulator will be as shown with an error at each point of less 
than &ev + l)]*F/K due to the bound surface charge (see Lorrain and Corson 1970, 
p 153). 

A more accurate analysis of the problem of a metallic sphere close to a charged 
insulator of finite thickness in terms of a numerical solution of Laplace's equation will 
be the subject of a subsequent paper. 
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The electrostatic forces on earthed conducting spheres due to a uniform distribution of 
charge on the surface of an insulating disc have been calculated. The analysis has been 
extended both to uncharged spheres and to spheres carrying a known charge. Forces 
are expressed as infinite series which are rapidly convergent subject to given conditions. 
Results are also presented graphically. Where possible, graphs have been given in a 
form which allows the force to be scaled to any case of similar geometry. The relationship 
between the results of this theory and those to be expected in the case of an insulator of 
finite thickness is discussed. 
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